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On sediment transport under dam-break flow
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We present exact solutions for suspended sediment transport under one-dimensional
dam-break flow, both over a dry bed and into a small depth of tail water. We explicitly
calculate the suspended sediment concentration, including erosion and deposition, and
investigate the effect of varying the erosional and depositional models employed. These
solutions offer insight into sediment transport processes under floods or sheet flow
events, and we also discuss their application as test-bed solutions for the validation
of numerical models.

1. Introduction
Dam-break flows, which represent the sudden release of fluid from behind a vertical

barrier, provide the simplest available model for a number of important phenomena,
such as break-out floods, sheet flow events and the formative stages of lahars or
debris flows. An idealized configuration for dam-break flow is shown in figure 1: the

barrier at x̂ = 0 divides fluids of different depths ĥ0 and ĥ2, until at time t̂ = 0 the
barrier is instantaneously removed, and fluid floods into the shallower region. The
classical descriptions of these flows obtained by Ritter (1892) and by Stoker (1957)
are among the simplest non-trivial solutions of the shallow-water equations, and may
also be interpreted as a limiting form of constant-flux gravity current (Gratton & Vigo
1994). They are not of merely mathematical interest, as they have been confirmed
experimentally to provide a reasonably good description of the flow once transients
associated with the initial release have died down (Stansby, Chegini & Barnes 1998).

Recent studies by Capart & Young (1998) and by Fraccarollo & Capart (2002) have
considered dam-break flows as agents of sediment transport. Both studies investigated
flow over an erodible bed consisting of loose coarse sediment which could be mobilized
en masse as bedload: they found that the flow forms an erosional bore, which advances
digging a uniform scour pit beneath it and pushing the eroded sediment before it
as a steep debris snout. The current paper may be regarded as complementary to
these studies, and deals with the rather different sedimentary regime in which the bed
consists of fine or cohesive material which, once a threshold shear stress is exceeded,
is entrained into the water column and then transported in suspension. Our interest
is in characterizing the quantity of sediment which such flows may mobilize and
transport.

A secondary motivation for this work is computational. The shallow-water equa-
tions are among the principal tools employed in numerical studies of sediment
transport processes and morphodynamics, and important morphodynamical flows
frequently involve features such as internal bores and moving shoreline boundaries
which present a significant challenge to the accuracy and stability of numerical
schemes. A variety of analytical ‘test-bed’ solutions, of which dam-break flows are
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Figure 1. Schematics of the (a) Ritter and (b) Stoker solutions for dam-break flow
on a horizontal bed.

perhaps the simplest and most popular, are used to validate the hydrodynamic com-
ponents of such schemes. However, there is still a need for exact solutions which may
be used to verify the accuracy of the corresponding predictions of sediment transport.

In § 2, we describe the shallow-water model which we employ to describe sediment
transport. In § 3 we construct and discuss exact solutions, and in § 4 we comment on
the applications of our results.

2. The shallow-water equations
The one-dimensional shallow-water equations for flow over a horizontal bed may

be derived from the Euler equations under the assumption that the characteristic
horizontal length scale of the flow is much greater than the characteristic vertical
length scale. In their non-dimensional form, the equations for the conservation of
fluid mass and momentum have the form

∂h

∂t
+

∂

∂x
(uh) = 0,

∂u

∂t
+ u

∂u

∂x
+
∂h

∂x
= 0, (2.1)

where h represents the depth of water and u is a depth-averaged horizontal velocity.

The variables here have been non-dimensionalized with respect to a length scale ĥ0

corresponding to the initial height of the dam and a velocity scale Û = (ĝĥ0)
1/2, where

ĝ is the acceleration due to gravity; they are given by

h = ĥ/ĥ0, x = x̂/ĥ0, u = û/Û, t = t̂Û/ĥ0. (2.2)

Throughout, carets denote dimensional quantities; dimensionless quantities are un-
adorned.

In dimensional form, the equation for the conservation of sediment transported as
a dilute well-mixed suspension is given by

∂ĉ

∂t̂
+ û

∂ĉ

∂x̂
=

1

ĥ
(q̂e − q̂d) , (2.3)
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where ĉ represents the mass concentration of suspended sediment and q̂e and q̂d are,
respectively, the mass erosion and mass deposition fluxes which represent exchanges
between the water column and the bed. In this formulation, we have assumed that
the diffusive transport of particles in the horizontal direction is negligible compared
to advective transport. We will also assume that the mass exchange fluxes may be
expressed in terms of the vertically averaged quantity ĉ rather than of the concen-
tration of suspended sediment near the bed. This is formally valid when vertical
mixing in the water column is sufficiently intense to maintain a vertically uniform
concentration profile, in other words in the limit of infinite friction velocity. For
finite friction velocities, the concentration profile is both vertically non-uniform and
time-dependent, with a characteristic ‘response time’ which has been investigated for
steady flows by Stansby & Awang (1998). However, the approximation which we
make here is well-established as the standard method by which empirical deposition
formulae may be incorporated into a depth-averaged model: like the depth-averaged
model itself, it provides an informative leading-order description of the system.

In general, the quantities q̂e and q̂d are functions of both the fluid velocity û and
the suspended sediment concentration ĉ. In this paper, we consider the following form
for the erosion rate q̂e:

q̂e(û) =

m̂e
(
û2

û2
e

− 1

)n
for |û| > ûe

0 for |û| < ûe.

(2.4)

This model is commonly used to describe the erosion of sediment from a cohesive bed
(Teisson et al. 1993) or from a bed of fine cohesionless material (Dyer & Soulsby 1998),
where some critical shear stress, corresponding to a velocity ûe, must be exceeded in
order to break up the bed and entrain particles. The quantity m̂e is a dimensional
mass erosion rate, while n is a dimensionless exponent, typically in the range n = 1
to n = 3.5. We note that the approach described in this paper may readily be applied
to other forms of the expression q̂e(û).

A number of expressions have been proposed to describe the deposition of cohesive
sediment at low flow rates (Teisson et al. 1993). However, as we will demonstrate,
we need only consider deposition when û > ûe, and in this regime there are two
possible models: either q̂d = ŵsĉ, where ŵs represents the settling velocity of the
largest flocs which can survive the near-bed turbulence; or turbulence is too strong
for flocculated matter to settle at all, and q̂d = 0. It is often postulated that q̂d = 0
when velocities are high enough to erode sediment, but Sanford & Halka (1993) have
demonstrated that this assumption may not be appropriate to describe sedimentary
processes outside the laboratory. For this reason, and in order to make our results
applicable to cohesionless particles with constant settling velocity ŵs, we will consider
both forms of q̂d.

We can now define a reference concentration Ĉ = m̂e/ŵs (in the case q̂d = 0, we may

set Ĉ = m̂e/Û instead), and non-dimensionalize equation (2.3) by defining c = ĉ/Ĉ ,
qe = q̂e/m̂e and qd = q̂d/m̂e. It is also helpful to rewrite equation (2.3) in Lagrangian
terms. We consider the concentration of sediment cL(t) in a fluid ‘parcel’ with position
xL(t), depth hL(t) and velocity dxL/dt = uL(t). In this Lagrangian framework, equation
(2.3) is then equivalent to

dcL

dt
=
E

hL

[qe(uL)− qd(cL)] , (2.5)
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where E = ŵs/Û is a non-dimensional bed exchange rate representing the ratio of
hydrodynamic to sedimentary time scales. The degenerate initial condition for dam-
break flows allows us to eliminate E from the problem by the further rescaling
x 7→ E−1x and t 7→ E−1t; in subsequent sections, this is presumed to have been done.

3. Solutions for sediment transport
Over a horizontal bed, the dam-break solutions have the form of simple waves

(Stoker 1957). The most elementary case is Ritter’s solution for flow over a dry
horizontal bed, h2 = 0. In this case (figure 1a), the flow field has the form of an
expansion wave, analagous to a rarefaction wave in gas dynamics. When the region
x > 0 initially contains still fluid of depth h2 > 0, the simple wave solution involves
a rightwards-propagating bore as well as an expansion wave (see figure 1b).

3.1. Ritter solution for flow over a dry bed

3.1.1. Hydrodynamic solution

The expansion-wave solution due to Ritter (1892) has the form

h(x, t) =
1

9

(
2− x

t

)2

, u(x, t) =
2

3

(
1 +

x

t

)
(3.1)

in the region −1 6 x/t 6 2.
We may readily describe this flow in Lagrangian terms. We consider a fluid parcel

at x = xL(t): its velocity is given by dxL/dt = 2
3
(1 + xL/t), and thus xL(t) = 2t+Bt2/3

for some constant B which labels the parcel. This leads immediately to

uL(t) =
dxL

dt
= 2 + 2

3
Bt−1/3, hL(t) = h(xL(t), t) = 1

9
B2t−2/3. (3.2)

When considering sediment transport, it is natural to relate the labelling quantity B
to te, the time at which the velocity of the fluid element attains the critical velocity

for erosion. We find that B(te) = 3
2
(ue− 2)t

1/3
e , where ue = ûe/Û is the dimensionless

threshold velocity for erosion. We note that we require ue < 2 in order for erosion
to occur, and thus that B < 0 for all fluid parcels, so each parcel accelerates asymp-
totically towards a maximum velocity u = 2. Hence with the initial condition c = 0
everywhere, non-zero concentrations can only occur in regions where u > ue: this
justifies our previous statement that we need only consider qd in this velocity range.

3.1.2. Constructing solutions for the concentration field

Under the flow defined by equations (3.2), equation (2.5) becomes

dcL

dt
=

9t2/3

B2
[qe(uL(t))− εcL(t)] for t > te, (3.3)

where ε = 0 for qd = 0 and ε = 1 for qd = c. The initial condition is given by cL(te) = 0.
This equation may be integrated to give

cL(t) = A(t)

∫ t

te

9z2/3

A(z)

qe(uL(z))

B2
dz, where A(t) = exp

[
− 27ε

5B2
t5/3
]
. (3.4)

The integral cannot in general be expressed in terms of elementary functions, but is
easily evaluated using standard packages such as maple.
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Figure 2. Solutions for sediment transport with qd = c and ue = 1. Successive plots at t = 0.2 to
2.0. Concentration field c for (a) n = 1 and (b) n = 3; sediment load s = ch for (c) n = 1 and
(d ) n = 3. Solid lines show exact solutions, dashed lines show solutions with c = ceq.

Finally, by substituting for B in terms of te, and then for te(x, t), given by

te(x, t) =
1

t2

[
2

3

(
2t− x
2− ue

)]3

, (3.5)

we obtain the Eulerian concentration field c(x, t).
Before discussing the solutions, it is helpful to define the quantity ceq = qe(u(x, t)).

In the case qd = c, this quantity represents an instantaneous equilibrium between
erosion and deposition in a fluid parcel, and it is straightforward to show that in
any given parcel cL(t)→ ceq(uL(t)) as t→∞. (In fact, the convergence is rather rapid,
especially in the shallower parts of the flow, and this provides a useful means of
evaluating c(x, t) close to the front of the flow x = xsh(t), where plotting programs
may have difficulty handling the exponentials in equation (3.4).) Since ceq(t) is clearly
bounded above by the shoreline concentration csh = qe(2), we obtain the result that
when deposition occurs, concentrations must be bounded by c = csh, even in very
shallow water close to the front. Figure 2 illustrates this point.

3.1.3. Examples of the solutions

Figure 2 illustrates the solutions with continuous deposition for two values of n.
The principal feature of the plot of concentration c is the maximum at the front,
where flow is fastest and has been erosional for longest. However, the sediment load
s = ch is highest in somewhat deeper water, and in fact tends strongly to zero near
the front. As n is increased, the shoreline concentration increases dramatically and
the plots of c become more concave, because of the enhanced erosion at higher
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Figure 3. Solutions for sediment transport with qd = 0 and ue = 1. Successive plots at
t = 0.2 to 2.0, showing sediment load s = ch for (a) n = 1 and (b) n = 3.

velocities. However, the overall sediment load increases much more slowly, because of
the reduced erosion at low velocities. Because of the concavity of c(x, t), the maximum
of s occurs rather closer to the front for higher n, and since velocities are higher there,
the maximum sediment flux q = cuh, which describes the transport potential of the
flow, is further enhanced for higher n.

Figure 3 illustrates the solutions when deposition is neglected entirely. In this case,
the plots of c are dominated by the unbounded maximum which develops at the
front, and so we show only the plots of total sediment load s = ch. This quantity
increases monotonically towards its value at the front s = ssh. By considering the
sediment transport equation evaluated at x = xsh, we obtain the result[

∂(ch)

∂t
+
∂(chu)

∂x

]∣∣∣∣
xsh

=
dssh
dt

+ ssh
∂u

∂x

∣∣∣∣
xsh

=
dssh
dt

+
2

3t
ssh = qe(2), (3.6)

and since qe(2) is a constant, and there is initially no sediment in suspension, we
obtain

ssh = 3
5
t qe(2). (3.7)

The unboundedness of c at the front is unphysical, since when concentrations become
sufficiently high, the presence of suspended matter significantly affects the rheology of
the flow, and the hydrodynamics must be modified accordingly (Iverson 1997). This
may, of course, occur also for the solutions in which deposition is included, in which
case it will depend on the value of Ĉ as well as on the criterion for the suspension to
be regarded as dilute. However, a comparison between figure 3 and figure 2 suggests
that including deposition must significantly alter any estimate which we are able to
make of the time taken for such a flow to ‘bulk up’ in this manner.

3.1.4. Net scour

A final point which these solutions illustrate is the importance of deposition in
controlling the net scour beneath the flow. We have carried out these calculations
assuming that the total quantity of sediment eroded is sufficiently small that the bed
geometry is not significantly altered. If the depth of scour, which is proportional to
the amount of material eroded per unit length, can increase unboundedly, then this
assumption will become invalid after sufficient time has passed.

We can quite readily estimate the total amount of sediment eroded. When deposition
occurs, the concentration field is bounded above by ceq(u(x, t)), and so the total
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quantity of sediment in suspension, S(t), is bounded by

S(t) 6

∫ 2t

0

ceq(u(x, t))h(x, t) dx = t

∫ 2

0

ceq(u(ξ))h(ξ)dξ, where ξ =
x

t
. (3.8)

Since the length of the region from which material has been eroded also increases
linearly in time, we may conclude that when deposition is allowed for, the depth of
scour beneath the flow may not increase unboundedly, and so the solutions obtained
here may remain formally consistent.

When deposition is neglected, we have no upper bound for the concentration field.
However, we may write

dS

dt
=

∫ 2t

0

qe(u(x, t)) dt = t

∫ 2

0

qe(u(ξ)) dξ, (3.9)

so S(t) ∝ t2, for any form of qe. Hence the maximum depth of scour must increase
at least linearly with time, and so when deposition is neglected, solutions for erosive
dam-break flows which neglect the effect of scour on the bed must become inconsistent
at large times.

3.2. Stoker’s solution and the effect of tail water

Stoker’s (1957) extension to Ritter’s dam-break solution describes the propagation
of a dam-break wave into a region of still ‘tail water’ of scaled depth h2 < 1. The
solution is illustrated in figure 1(b): it consists of a bore propagating into the tail
water with velocity V , behind which is a region of uniform flow with u = u1 and
h = h1, which is itself linked by Ritter’s expansion wave solution to the quiescent
reservoir behind.

Given the downstream depth h2 = ĥ2/ĥ0, the quantities V , h1 and u1 may easily be
deduced from the conservation of mass and momentum across the bore, and from
the condition that velocity and surface elevation are continuous at x = xf , where the
expansion wave meets the region of uniform flow. We may express V , h1 and h2 as
functions of u1, and then invert the solutions numerically to obtain u1, and hence
V and h1, as functions of h2. (For further details of the hydrodynamic solution, see
Stoker 1957.) A feature of the solution is that it varies strongly at h2 = 0, with

u1 ∼ 2− 27/4h
1/4
2 , V ∼ 2− 27/4h

1/4
2 , h1 ∼ 23/2h

1/2
2 for h2 � 1, (3.10)

so even a small tail water depth has a dramatic effect on u1 (see figure 5a below).
This is of interest because of the possible presence of tail water in physical contexts

such as a breakout flood entering a river valley, and also because a popular means of
handling the shoreline condition for beach and dam-break problems is to impose a
small notional water depth everywhere in the numerical domain, so that the shoreline
becomes effectively a bore. It is therefore important to investigate the effects this may
have on sediment transport.

We may express the flow field in Lagrangian form as we did for the Ritter solution,
and construct solutions for sediment transport in exactly the same manner as before
(see equations (3.3) and (3.4)). The algebraic details of this construction are rather
lengthy and are not informative, and we therefore omit them here. However, certain
features of the resulting sediment transport are worth calling attention to.

Figure 4 illustrates a typical solution, with the rather small tail water depth
h2 = 0.01. The main feature of the plots is the region of near-constant sediment
concentration which coincides with the region of uniform flow. A fluid parcel may
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Figure 4. Solutions for sediment transport under Stoker’s dam-break solution with qd = c, h2 = 0.01,
ue = 1 and n = 1. Successive plots at t = 0.2 to 2.0: (a) concentration field c; (b) sediment load
s = ch (compare with the Ritter solution, figures 2a and 2c).

enter this region either from the expansion wave behind or through the bore from
the tail water ahead; having entered, it remains in the region of uniform flow, and
the concentration adjusts asymptotically to its equilibrium value in this region,

cL(t) = ceq(u1)−Ke−t/h1 , (3.11)

where K is a constant of integration which depends on the initial position of the fluid
parcel.

Figure 4(b) illustrates the effect the presence of tail water has on the total sediment
load, and thus on the capacity of the flow to erode and transport sediment. Comparing
figures 2(c) and 4(b), we observe that the difference between the sediment load for
h2 = 0 and h2 = 0.01 is quite substantial: the maximum sediment load is reduced
from s = 0.087 to s = 0.064, and the sediment-laden region extends only to x = Vt
rather than to x = 2t. Figure 5 provides the explanation for this: it illustrates how the
very rapid decrease in u1 as h2 increases from zero drives a strong decrease in ceq(u1),
and hence in both the sediment load and the sediment flux in the uniform region.
The effect is amplified for higher n by the stronger dependence of ceq on u.

These results indicate that considerable caution is required when numerically mod-
elling sediment transport under flows with a moving shoreline, since if even a small
bore develops it can lead to unexpectedly large changes in the sediment transport
rate. As well as indicating the possibility of such errors, the solutions presented here
offer a means to identify them by more thoroughly testing numerical schemes.

4. Conclusions
We have presented exact solutions which describe suspended sediment transport

under dam-break flow. For dam-break flow over a dry bed, the concentration field
increases monotonically towards the front, while the total sediment load has a maxi-
mum somewhat behind it. Conversely, for flow into quiescent tail water, a region of
near-uniform sediment concentration rapidly develops behind the bore, correspond-
ing to a local balance between the erosion and deposition of sediment. Furthermore,
the maximum concentrations and maximum sediment load in the flow are both sub-
stantially reduced compared to the dry bed solution, for even a relatively small tail
water depth. This suggests that, while the dry bed solution is the simplest prototype
for many physically relevant flows, the insight provided by the Stoker solution is
important in interpreting the dry bed results.
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Figure 5. The effect of a small tail water depth h2 on hydrodynamics and suspended sediment behind
the bore. (a) Maximum velocity u1 (solid line) and depth h1 (dashed line; scaled by a factor of 10 for
clarity) in the uniform region. (b), (c) and (d ) Scaled equilibrium concentrations c∗ = ceq(u1)/ceq(2);
equilibrium sediment loads s = h1ceq(u1); and equilibrium sediment fluxes q = h1u1ceq(u1), for n = 1
(solid), n = 2 (dashed), n = 3 (dotted).

As well as indicating the sensitivity of sediment transport to the presence of tail
water, our solutions illustrate how the quantity of sediment mobilized depends on
the models employed for the erosion and deposition of suspended sediment, and
the implications of this for the bulking up of the suspension into a debris flow. A
secondary role for these solutions is as test-bed cases, which are easily reproduced
and may be used to validate numerical schemes for predicting sediment transport
within shallow-water models.

Throughout this study, we have employed the simplest available descriptions of
sediment distribution in the water column. One extension which might yield interesting
results is to consider in more detail the vertical distribution of suspended sediment
(Stansby & Awang 1998); another is to investigate how dam-break flows might
fluidize a cohesive bed and transport material as a fluid mud layer, analagous to the
non-cohesive bedload considered by Capart & Young (1998) and by Fraccarollo &
Capart (2002). Both extensions lie beyond the scope of this paper. However, they
are natural developments of the existing work in this area, and could provide further
insight into problems such as the early stages of lahar formation.

The method used to construct the exact solutions presented here is easily applied
to other problems in which the flow field may be expressed in Lagrangian terms.
An immediate extension of the solutions described here is to the dam-break flow
on a slope which has been used as a model for the swash that results from a
breaking wave on a plane beach (Shen & Meyer 1963), and work on this problem
is currently underway. A similar approach has recently been applied to describe
sediment transport under tidal flows on mudflats (Pritchard 2001).
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